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1. INTRODUCTION 

In Recent times, one of the most important commodities for human life indeed is electricity. Shortage of electricity creates a 

lot of havoc in daily life of people. Along with increase in population, the need for electricity is picking up a quick pace (i.e. 
the required load demand). Due to this, tremendous pressure is building up on the electrical utility for maintaining a reliable 

power supply while simultaneously maintaining their economical stand. For this to happen unit commitment is playing a vital 

role. The study of unit commitment displays different methods underlying for starting or shutting down of generating units 

based on forecasted load demand requirements [1]. Because of its strong importance in electrical power generation, many 

researchers came up with various methods for solving this problem. 

Some methods include: Priority list method [2] which is a primitive and fastest way to solve UCP, it consists of priority wise 

arrangement of generation units based on the load but its operational cost is substantially high. Dynamic programming 

approach [3] is a classical method which is being extensively employed due to its pragmatic nature, its main drawback is 

dimensionality i.e. on increase in number of units’ leads to a very complex problem. Branch and bound [4] is also a classical 

method which takes an unusually more time for solving large problems and suffers from lacking of memory storages. Coming 

to Lagrangian relaxation method [5] has significantly reduced the duality gap for finding the feasible outcomes but the 
efficiency in these outcome depends entirely on the choice of Lagrangian multiplier and corresponding updating 

methodologies employed in the problem. Few non classical methods are also existing; among them: Fuzzy Logics [6], Neural 

Networks [7], Genetic algorithms [8], Simulated Annealing [9], Tabu search method [10], Particle swarm optimization [11] is 

a sensible and noble approach that can be considered for solving which is stably being applicable from a decade due to its 

simplicity and strength of optimising. Lastly, differential evolution [13]is a good evolutionary algorithm etc.; are worth to be 

mentioned.  

Though there are many new methods coming into picture for solving UCP but unfortunately no method can be considered as 

absolutely flawless to study this particular area. In this paper, these flaws have been nullified by making the requisite 

modifications in PSO and DE [14] and are being presented together as Implementation of Particle Swarm Optimization and 

Differential Evolution Application to large-scale Unit Commitment Problem. 
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Abstract- This paper suggests the solving of unit commitment problem (UCP) using Lagrangian relaxation incorporating 

particle swarm optimization (PSO) and differential evolution (DE). The objective is to obtain optimal cost meeting all the 

required constraints. PSO is applied for initializing and Lagrangian multiplier update purpose. For large scale problems PSO 

as modified in operation i.e. Particles “flying out” of the simplex vicinity is a primary limitation of PSO because the 

computational time is increased while bringing back the “flown away” particle or by completely neglecting that particular 

particle, vice versa. This limitation is suppressed by modifying the method by operating it in an enclosed hyper cube before it 

attains a non-feasible point. Another method Differential evolution technique is quite popular among various evolutionary 

techniques existing, due to its impeccable accuracy and swift responses. But in some cases due to its swift response abilities, DE 

may tend to drop regional optimums. We introduce a dynamic mutation factor in the solution algorithm for surpassing this 

limitation for large scale problems. In this paper we implement Particle Swarm Optimization and Differential Evolution 

together in large-scale Unit Commitment Problems.The mitigation of the objective function for satisfying the minimum up and 

down time constraints, start-up cost and spinning reserve is regarded as the problem formulation of the unit commitment. The 

suggested method is tested for 10 units to 100 units with 24 hours’ demand horizon and was verified with various pre-existing 

methods to verify its effectiveness. 

Keywords- Unit Commitment (UC), Modified Particle Swarm Optimization (MPSO), Improved Differential Evolution (IDE) 
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2. PROBLEM FORMULATION 

The primary function of UCP is to totally curtail the generation costs in a stipulated time (i.e. one day) under specific 

constraints like spinning reserve, as its boundaries. Objective function of UC to be minimized is [9]. 
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Subject to following constraints  

 

2.1 Power Balance Constraint – 
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2.2 Spinning Reserve Constraint – 
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2.3 Generation Limit Constraint – 
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2.4 Min up time and down time Constraints – 
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2.5 Start up Cost – 
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3. LAGRANGIAN RELAXATION 

Mitigation or tranquilizing of coupling constraints present in UCP is accomplished by LR, which is indeed realized through 

dual optimization method [9]. 
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With respect to nonnegative λt and µt, whereas minimizing it with respect to other control variables in problem, that is  
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Where 
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Equations (2) & (3) are coupling constraints across the thermal units.  

Lagrangian function is rewritten as  
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Since coupling constraints are excluded, thermal units can mitigate this term individually afterwards. Over the stipulated 

amount of time the best value for LR function is found out for every individual unit i.e, 
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For t=1,...,T and the constraints in equation (5) 

On/Off commitment guidelines:  

Here, Dynamic programming is employed for achieving a dual outcome, for each and every individual unit as depicted in fig1, 

showing the only two possible states for unit i (i.e. 10, orU ti  ). At 0, tiU  state, the value of the function to the 

minimized is unimportant (i.e., it equals zero), at the state where 1, tiU , the mitigated function is   titt
ii PPF   the 

start-up cost and the term max,i
tP  are dropped here since the minimization is with respect to 

t
iP  

Min   titt
ii PPF  is mitigated to calculate dual power with the help of optimality condition 
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Figure 1. Two-state dynamic programming 
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The solution to this equation is  
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The dual power is obtained  

i

i
t

dualt
i C

b
S

2
, 




 (14) 

Three cases to check 
optt

iP ,
 against its limits 

A. If  min
, , i

t
i

dualt
i SSthenSS   

B. If  max
,

min i
dualt

ii SSS   

          Then min
,

i
dualt

i
t
i SSS   

C. If max
,

i
dualt

i PS  Then iMax
t
i SS   

Dynamic programming is employed to decide the optimal schedule of each unit over the scheduled horizon. More specifically, 

for each state in each hour, the on/off decision making is needed to select the lowest cost among them by conducting standard 

evaluation of the start-up cost and accumulated costs. The dual power calculated will be substituted in the new On/Off 

decision criterion. 
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i = 1... NP                                                                                                    

To mitigate the above term in equation (15) at every individual hour, 
If 

      01 max,1,,  
t
i

tt
i

tt
i

t
titi

t
ii SSSVSTSF             

This unit will be committed, if it does not violate the minimum downtime constraint 1, tiU . 

 

4. PROPOSED MODIFIED PARTICLE SWARM OPTIMIZATION FOR LARGE SCALE UC PROBLEM 

This ability of PSO to obtain optimal outcomes in n-dimensional search space with a good response rate, makes PSO stand 

unique globally. 

PSO concentrates on timely modifying velocities of particles so that they march towards their respective bestP  and bestL  

values upon each time step. Whereas random numbers are fed as inputs for necessary acceleration towards attaining bestP  and 

bestL  values. bestG  (i.e global best) is best value of particle among total population implying to condition that all neighbour 

hoods are considered. 
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In large scale problems due to its fast response characteristics, some particles tend to fly away from their vicinities which 

indeed causes stress on the optimizer in deciding either to bring back the particle or to neglect them. This entire process 

eventually contributes to increase in the calculation time to a large extent. So, this serious limitation of PSO for large scale 

system is surpassed by modifying the optimizer, by making it optimize initially, in a regular hypercube before it attains a 

feasible point. Then in our search space an optimal function “F” is assigned to quickly identify the target optimal value.  

For illustration, consider a “r” factored model in which we want to find out t- point optimal value. 

Let )1(*  rtm and let 
m]1,0[ denote the m-dimensional hypercube. Define the m*1 vector, 

,),,...,(~
1   fss t where xi is a r*1 vector in 
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The function F is invariant in the sense that )~()~(  FFF  and the model is based on tisss irii ,...,1),.1/(~  and 

the components in ).1/(
~

fff k are their corresponding weights. The notation )~( F  signifies that the design  is 

transformed from ~via the function F. 

Now our modified PSO algorithm is dependent on the optimal function F in Eq (18) which is employed as: 

Firstly, we take a random population of “n” with “t” design points from 
 . For differentiating the modification, we 

introduce two new notations i.e. let 
pbest
i

~  be the best position of ith particle as of bestP . Then let 
gbest~  be the global best i.e. 

best value of all particles among the total population as of bestG previously. The procedure of (k+1)th iteration is illustrated as 

follows: 
 

 Generate a new velocity 
1k

iv to reach to next position given by: 
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Where 
k
iv  was the velocity used to get to the (k)th iteration, is the inertia weight, c1 and c2 are two pre-specific positive 

constants, and rand1, rand2 are m*1 uniform random vectors. 

 The next location for the ith  particle is  
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If
1~ k

i is not in
 , we project 

1~ k
i to a location closest to the boundary of

 . 

 Project 
1~ k

i onto the regular r-simplex using i.e. )~( 11   k
i

k
i P and evaluate )( 1 k

i . 

 Update the current best for each particle
pbest
i

~ . 

 In this similar fashion, we find the 
gbest~  after all particles are updates and continue the procedure. 

 

The entire procedure is put to an end after completion of certain user defined numbers of iterations. Finally, we obtain the 

required
gbest  for large scale systems. 

 

5. PROPOSED MODIFIED DIFFERENTIAL EVOLUTION FOR LARGE SCALE UC PROBLEM 

According to Price [13, 14], the primary pros of DE include fast application and modification, simple and easy to implement, 

effective global optimization capability, parallel processing nature, self-referential mutation operation, ability to handle non 

differentiable, noisy, and/or time-dependent objective functions etc. 

Mutation, crossover and selection are the three operations involved in DE for obtaining an appropriate solution among a 
population set. In DE, candidate solutions are identified by vectors and set of vectors generate the population. The basic 

notation is to form new vector by means of the weighted difference between the two population vectors. These three vectors 
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are chosen randomly. Then the fitness of the new vector is checked. If the fitness of the new vector is better than the previous 

two, then exchange takes place.  

Implementation of DE 

The implementation of DE can be illustrated in the following four steps: 

 

5.1 Initialization – 

In this step, initialization of population vector of size pN  in random in the D-dimensional search space over a generation G as 

follows: 
minminmax )(* jjjij xxxrandx                (21) 

Where i = 1, 2, pN denotes the individual’s population index and j = 1, 2, D signifies the D-dimensional search space 

position. randis a uniformly distributed random number varies between 0 to 1. The upper bound and lower bound of the 

decision parameter are symbolized by 
min
jx and

max
jx  respectively.  

Now based on obtained fitness value either of the two cases are carried out, case a: deceleration factor is indulged if fitness is 

not up to the mark a (or) case b: acceleration factor is indulged if fitness is better than existing ones. These inputs are fed into 

mutation. 

 

5.2 Mutation – 

A mutant vector, for each target vector 
G
ix  is formed as: 
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Where k, l, and m are randomly chosen vectors {1, 2….}. Further k, l and m should be different so that N > 4 is required. The 

mutation factor F is an experimentally chosen parameter that is used to regulate the amplification of the difference between 

two individuals to escape search stagnation. A special modification to this mutation factor is discussed explicitly in upcoming 

theory. 

 

5.3 Crossover – 

 After mutation, crossover is applied to the population. For each mutant vector, a trial vector is generated as follows: 
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Where rC is a crossover probability and it is fixed parameter used to create trial vectors at all generations, randj a newly 

generated random value for each i. 

 

5.4 Selection – 

The selection procedure compares the trial vector
G
iU and target vector

G
jix of current position and the vector with the better 

fitness are allowed to enter the next generation. 
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In case of unsatisfied termination, this process is repeated again from mutation until there is a satisfactory outcome from the 

operation. 

But in some cases, especially for large scale problems, due to swift response abilities, DE may tend to drop regional 

optimums. We introduce a dynamic mutation factor in the solution algorithm for surpassing this limitation. 

bdrsF  *)1,0(* 2
 (25) 

Table 1 &2: illustrate the values to be taken for each variable discussed. 
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Table -1 Parameter Set-up of DE 

Mutation Factor (F) 0.5 

Crossover rate (CR) 0.9 

Upper bound 100 

Lower bound -100 

Number of vector (NP) 50 

Dimension 30/60 

Maximum of generation 1000/2000 

 

Table -2 Parameter Set-up of MDE 

Linear decreasing factor (d) 1~0 

Random variable (r) rand (0,1) 

Acceleration factor (s) 1.5 

Deceleration factor (b) 0.2 

 

6. RESULTS AND DISCUSSION 

The test system containing ten power generating units and a time horizon of 24hours is taken from [9]. In PSO the population 
consists of 100 individuals where as in DE also the population is of 100 individuals. In lambda iteration, the tolerance is 

assigned to 0.0001. The fitness values of each and every individual are calculated by adding the fuel cost, the start-up cost and 

the penalty value. For every hour based on whether the start-up is cold start or a hot start, the appropriate cost is added to the 

total cost. Depending upon generation unit status, lambda iteration is used for their cost calculations. Under violation of user 

defined constraints such as spinning reserve requirement, tup and tdown constraints etc. we employ the necessary penalty term. 

All parameter values are calculated using the best settings formed as a result of a series of 10 runs. The fitness function is 

given below: 
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The results are depicted in Table -3, Table -4 and Table -5. The cost variations and fitness variation are depicted in Figure 2 

and Figure 3 respectively for 150 iterations. The CPU run time for the following test system run is approximately 128 sec. 

 

Table -3 Unit commitment schedule of 100 generator system (Large-scale) 

Hour Units On/Off Schedule 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
16 

17 

18 

19 

20 

21 

22 

23 

24 

111111111111000000000000000000000000000000000000000000000000 

111111111111000000000000000000000000000000000000000000000000 

111111111111000000000000100000000000000000000000000000000000 

111111111111000000000000111110000000000000000000000000000000 
111111111111000000000011111111000000000000000000000000000000 

111111111111000001111111111111000000000000000000000000000000 

111111111111000111111111111111000000000000000000000000000000 

111111111111111111111111111111000000000000000000000000000000 

111111111111111111111111111111111111110000000000000000000000 

111111111111111111111111111111111111111111111110000000000000 

111111111111111111111111111111111111111111111111111110000000 

111111111111111111111111111111111111111111111111111111111111 

111111111111111111111111111111111111111111111110000000000000 

111111111111111111111111111111111111110000000000000000000000 

111111111111111111111111111111100000000000000000000000000000 
111111111111111111111111111111000000000000000000000000000000 

111111111111111111111111111111000000000000000000000000000000 

111111111111111111111111111111000000000000000000000000000000 

111111111111111111111111111111000000000000000000000000000000 

111111111111111111111111111111111111110000111111111110000000 

111111111111111111111111111111111111110000000000000000000000 

111111111111000000111111000111111111110000000000000000000000 

111111111111000000001111000000000000000000000000000000000000 

111111111111000000000000000000000000000000000000000000000000 
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Table -4 Simulation outputs of the suggested DE method (Large-scale) 

 

 

 

 
 

 

 

 

 

 

Table -5 Comparison of various methods 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 2. Convergence of total cost of 100-unit system with DE algorithm (Large-scale) 

 

 
Figure 3. Convergence of fitness of 100-unit system with DE algorithm (Large-scale) 

  

 

7. CONCLUSIONS 

The first suggested method exhibits good performance in solving the unit commitment problem when it is enclosed in a 

hypercube before attaining a non-feasible point for a large scale problem. In parallel to this, we solved the model with DE by 

adding a suitable dynamic mutation factor, for obtaining the optimal settings of Lagrangian multipliers. The method has been 

tested for hundred units with 24 hours’ time horizon inclusive of constraints. Moreover, the test results of the suggested 

methods are verified with the various pre-existing methods. Hence, it could be concluded that the approach gives optimal 

commitment schedule of units in large scale for any given demand that satisfies the defined constraints as well as the demand 

with minimum cost. 

 

No. of 

Units   

Best cost 

($) 

Average cost 

($) 

Worst cost ($) 

10 564,180 565,922 570,509 

20 1,123,321 1,124,283 1,129,199 

40 2,244,193 2,250,522 2,254,122 

60 3,366,628 3,372,331 3,378,352 

80 4,489,722 4,492,634 4,505,124 

100 5,610,001 5,621,821 5,630,851 

No of 

generators 

Total cost ($) 

LR[9] GA[9] EP[9] 

 

PSO(Large-

scale) 

DE(Large-

scale) 

10 565,825 565,825 564,551 564,030 564,180 

20 1,130,660 1,126,243 1,125,494 1,123,325 1,123,321 

40 2,258,503 2,251,911 2,249,093 2,244,267 2,244,193 

60 3,394,066 3,376,625 3,371,611 3,366,720 3,366,628 

80 4,526,022 4,504,933 4,498,479 4,489,800 4,489,722 

100 5,657,277 5,627,437 5,623,885 5,610,122 5,610,001 
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